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ABSTRACT

A new explicit bound is given for the ratio of the absolute error in an

approximate solution of a system of linear inequalities and equalities to the

absolute residual. This bound generalizes the concept of a norm of the

inverse of a nonsingular matrix. With this bound a condition number is

defined for a system of linear inequalities and equalities and for linear

programs. The condition number gives a bound on the ratio of the relative

error of an approximate solution to the relative residual. In the case of a

strongly stable system of linear inequalities and equalities the condition

number can be computed by means of a single linear program.
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SIGNIFICANCE AND EXPLANATION

In solving a system of nonsingular linear equations the condition number

gives a useful bound on the ratio of the relative error of an approximate

solution to the relative residual. We extend this bound to the important

cases of linear equations and inequalities and of linear programs which one

commonly encounters in operations research.
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A CONDITION NUMBER FOR LINEAR INEQUALITIES

AND LINEAR PROGRAMS

0. L. MANGASARIAN

1 Introduction

A well known result of linear algebra [1, 8] states that for the system

, of linear equation

Ex - g (1)

where E is a given n x n real nonsingular matrix and g is a given nonzero

* vector in the n-dimensional real Euclidean space Rn , the following bound for

the ratio of the relative error of an approximate solution to the relative

residual holds for any fixed normt

Ix X1 xl REX-l
< HE I Is (2)

Here x is the exact solution, that is Ex - g, whereas x is an

-1
approximate solution with residual Ex - g. The quantity IE I EI, which

depends on the norm employed, is called the condition number of the matrix

R. The condition number is a useful numerical constant which measures how

badly the relative error could behave in terms of the relative residual. The

purpose of this work is to define a similar quantity for the system of linear

inequalities and equalities

Ax < , Cx - d (3)

where A and C are given m x n and k x n real matrices respectively,

b is a given vector in the i-dimensional real Euclidean space Rm  and d is

a given vector in Rk.

Sponsored by the United States Army under Contract No. DAAG29-R0-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. MCS-7901066.
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Our results depend on a theorem due to Hoffman (4] which gives a bound on

the ratio of the absolute error in an approximate solution of a system of

linear inequalities to the absolute value of the residual. We shall give here

a new explicit expression for this bound by using a particularly simple proof

that makes use of duality theory of linear programming [3]. The bound in

* Hoffman's theorem is a generalization of the idea of a norm of the inverse of

a nonsingular matrix (Remark 2). For monotonic norms the product of this

bound with the norm of the matrices involved generates what we have termed a

condition number for matrices associated with a system of inequalities and

equalities (Theorem 2 and Definition 1). For the case of a system of

inequalities which satisfy a strong regularity condition we show how the

condition number can be obtained by solving a single linear program (Theorem

3). In Section 3 we extend the concept of a condition number to a pair of

dual linear programs.

We briefly describe now the notation and some of the basic concepts used

in this work. For a vector x in the n-dimensional real Euclidean space Rn,

1x1 and x+ will denote the vectors in Rn with components lxii - lxi

and (x+)i = max(xi,01 , i = 1,2,...,n, respectively. For a norm lx1 on

RP, lxi will denote the dual norm [5, 10] on Rn, that is

T
-xi | = max x y, where the superscript T denotes the transpose. The

generalized Cauchy-Schwarz inequality Ix yl 1 ixi8 ly , for x and y in
B

Rn, follows immediately from this definition of the dual norm. For I < p,1|
n

q and - + - 1 1 the p-norm I Ix iP)P and the q-norm are dual norms=p q i-i i

in Rn [8]. If 1.Na is a norm on Rn, we shall, with a slight abuse of

notation, let 1.1a also denote the corresponding norm on R for m 3n.

For an m x n real matrix A, Ai denotes the ith row and A. denotes the
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jth column, while lAl denotes the matrix norm [11] subordinate to the

vector norm I * I that is LI max AxI * The consistency condition
• Ix I ,I

Ax I NA 1 Ix I follows immediately from this definition of a matrix

norm. A vector of ones in any real Euclidean space will be denoted by e.

i

i
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2. Condition Number for a System of Inequalities and Equalities

We begin by stating and proving a form of Hoffman's theorem (4] which is

suitable for our purposes and which includes an explicit expression, not given

before, for the value of the bound on the ratio of the error in an approximate

solution to the residual. Robinson [9] has given a different but more

complicated expression for this bound.

Theorem 1. Let A, b, C and d be as defined in (3), let I-1 be a norm

on Rm+k and let

S - x I Ax < b, cx - d) (4)
n

be nonempty. Then for each x in R not in S there exists a point p(x)

in S such that

I x - p(x) I < pjO.(A,C) • I(Ax-b)+, (Cx-d) 1 (5)l+

where

(u,vw,yo.) is a vertex of:

u-v-A w - C y+C Te4 0
4 p (A,C): maximum 1w, y-eil T T 6)

u,v,w,yo B e u + e v = (

(u,v,w,y,) _ 0

Remark 1.

The subscripts 8 and * of i refer to the 8-norm and -norm used

in (5). We shall give below in (9) a relation using other norms. The

condition in (6) that (uv,w,y, C) be a vertex is essential, for otherwise

the maximum of (6) may not exist. We shall give below (Corollary 2 and

Theorem 3) cases where the vertex requirement need not be imposed.

Proof of Theorem 1. Let x be any point in Rn not in S. Because the set

S is nonempty there exists a point p(x) in S which is closest to x in

the -norm. For such a point, (p(x), lp(x)-xl,) constitute a solution of

-4-
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the linear program

min {6 -e6 p-x 06, Ap b, Cp d) . (7)

The dual of (7) is

max {x (u-v)-b w-dy-e )lu-v-Av-CTY+C C 0, TC(U+, ) , (8)

with a vertex solution (u(x), v(x), w(x), y(x), C(x)) which satisfies

0 ( 6(X):- pl-(x) - X1 M T lx) - V b) - (x)- d(y(x) - eolx))

T T
< Wlx (Ax-b) + lYlx) - e~(x)) (Cx-d)

C~x)T'lAxc-b)+ + (y'x) - e~lx)) (Cx-d)

(Since (Ax-b)+ > Ax-b)

< Iwlx), (ylx)- ec(x))l * I(Ax-b)+, (Cx-d) I

- (By the generalized Cauchy-Schwarz inequality)

•~ 1 10 A,c) IlAx-b)+ ICx-d) IB

Remark 2. For the case when Ax < b is absent from (3) and (4), C is a

nonsingular n x n matrix and B , definition (6) degenerates to

nu.lC) - IC -  .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. * *- ,
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Proof of Remark 2.

(u,v,y,C) in a vertex of:

P.4, - maximum I iy-e1CI Y-6 C (C )(u-v)
u,voy, cT

(u,v,y, ) > 0

Y-0OC (C T (U-v)

maximum Iy-O CI T T

(u,v,Y,C) 0

(Because the convex function Iy-e~I, attains

* its maximum at a vertex [10, Corollary 32.3.4])

eT U+aT

-maximum ICL uv
U,v (U,V)O 0

-maximum it ((CT) ). 1i
1(i~n

(sine ICT)(u-v)I is convex and attains its

maximum at one of the vertices of the simplex

{(u,v ), 6 U + e Tv - 1, (u,v) 2 01. These are the
vertices of the unit cube {(u,v)10 < (u,v) 1 a)

lying along the coordinate axes and excluding

the origin.)

1C I

- 0

Theorem 1 can be easily stated for norms other than the -norm as

follows.
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Corollary 1. Let the assumptions of Theorem 1 hold. Then for each x not in

S there exists p(x) in S such that

Ix - p(x) I < i< 8,(CC) - I(Ax-b)+, (Cx-d) I (9)

where
U B(A,C) - wa sc(A.c)

and a is the positive number relating the -norm and -norm by

IzI < a IzI for all z in Rn., Y =  YaD 0

Before deriving the condition-number result for the system (3) we need a

couple of simple lemmas. We recall [5, 8] that a monotonic norm on Rn is

any norm Io- on Rn such that for a, b in Rn, lal < IbI whenever

lai C Ibl. The q-norm, lalq = qq for q I I is a monotonic norm
i= 1

(8].

Lemma 1. Let a and b be real numbers. Then a < b implies (a)+ < Ibi.

Proof. Let a < b. Then

IbI - (a)+ = 2(b)+ - b -(a)+ = ((b)+ - b) + ((b)+ - (a)+) > 0 •

0

Lemma 2. Let 11 be a monotonic norm on Rre +k, let a, b be in SP and

let c, d be in Rk. Then a < b and c d imply that

I(a) + , CIO I < dS

Proof. Let a < b and c = d. By Lemma 1 we have that (a) < Ibi, and we

also have that Icl Idl. Hence by the monotonicity of I.i we have that

(a)+, CI < Ib,d I

0

Lemma 3. Let A, b, C and d be as defined in (3) and let I-1a be a

monotonic norm on RM+ k. Then I(-b) +, dl (Ax, Cxl for any x in S.

Proof. Just apply Lemma 2 to -b < -Ax and d Cx.

0---
I i i I I II -7-i °



We are now ready to establish our condition-number result for the system

(3).

Theorem 2. Let A, b, C, d and S be as defined in (3) and (4), let I.I

be a monotonic norm on Ry +k  and let ((-b)+, d) 0 0. Then there exists a

number p BB(AC) defined by (10) and (6) such that for each x in Re not

in S there exists a p(x) in S such that

IN - p(x) I (,)Il I(Ax-b) , (Cx-d)I,
Ip(x) I C I(-b), dl(

Proof. Let x be any point in Rn not in S. By Corollary 1 there exists a

point p(x) in S satisfying (9). Obviously p(x) # 0, because

((-b)+, d) ¥ 0, and

Ix -p(x) I IC-b) , dl I(Ax-b) , (Cx-d)l
, - <,U (AC)+- +

Ip(x) N U (  Ip(x) I a(-b) +, dl

kp(x), Cp(x) I(Ax-bl+, (Cx-d)I

< u 8 (A1 C) Ip(x) I I(-b)+, dl

(By Lemma 3)

A (l-b+ (Cx-d)I
C c P I(-b) +, dl

0

It is evident from (11) that the following is an appropriate definition

for a condition number of (A,C) relative to the inequalities and equalities

(3).

Definition 1. Let A, b, C and d be as defined in (3), and let 0-10 be a

monotonic norm on R;+ k. The condition number v (A,C) of the matrices

(A,C) relative to the system of inequalities and equalities of (3) is defined

by

-8-
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VS(A,c):= U 8A,C) (12)

where vi88(A,C) is defined by (10) and (6).

In view of Remark 2 we have that v(.,C) - IC- IIC I when C is

nonsingular and A is not present.

We note that the computation of the condition number v (A,C) of (12)

depends on computing 1i (AC) of (6) which is a problem of maximizing of a

convex function on the vertices of a polyhedral set. This is a difficult

problem because it may have many local maxima. This problem however can be

reduced to a maximization problem on the entire polyhedral set rather than on

its vertices, if the objective function is bounded above on the entire

polyhedral set. In particular we have the following;

Corollary 2. Let A and C be m x n and k x n real matrices

respectively and let 1*1 0 be a norm on Rmik. If

IAx < 0, Cx - 01 9 * and the rows of C are linearly independent (13)

then the constant U S(A,C) of (6) is also given by

u-v-ATw - CT z 0

1 (AC) - maximum t uw,z-w-C 014
u,v,w,z e u + e)

(u,v,w) ! 0

Proof. Note that problem (14) is obtained from (6) by dropping the vertex

condition from (6) and defining z - y-er. We first show that the feasible

region of (14) is bounded under assumption (13). Suppose not, then there

i i i i i i
exists a sequence {(u ,v ,w ,z )) with {W ,z 1) + for some norm,

{(ui,v i ) } remaining bounded and

i i Ti cTz i i
U -V, T~T~.... . . " 0 > 0--- '

I, z I Iw ,zI

4 -9-



Hence by the Bolzano-Weierstrass theorem there exists Cvz) such that

A;w + CTz - 0, w ) 0, (v,';) 0 (15)

which contradicts the linear independence of the rows of C if w - 0 and

contradicts the nonmptiness of (xlAx < 0, Cx - 0) if ; 9 0 because then

T T- T T-o > x A w + x C z - 0. Hence the feasible region of (14) is compact and the

continuous objective function iw,zl * attains a maximum on it. Since
8

problem (14) is equivalent to problem (6) without the vertex requirement, then

problem (6) without the vertex condition must have a solution. Since the

objective function of (6) is concave and the feasible region is a polytope not

containing straight lines going to infinity in both directions, problem (6)

without the vertex condition must have a vertex solution [10, Corollary

• 32.3.4]. Hence under assumption (13) the vertex condition can be dropped from

(6) which results in (14).

0

Remark 3. It can be shown [7] that condition (13) is equivalent to the strong

regularity or strong stability condition that

moI -

Ax < b, Cx - d has solution x for each (b,dD R (16)

For the case when there are no equalities present in (3), 8 " - and

8 - 1, problem (14) becomes a simple linear program and the condition

number of the matrix A with respect to the inequalities Ax < b can be

determined by solving a single linear program. In particular we have the

following.

Theorem 3. Let A be an m x n real matrix, let b be a vector in Rm ,

let S - (xlAx < b) and let (:xlAx < 0) 0 0. Then for each x in Rn not

in S there exists a point p(x) in S such that

Ix- p(x)I. 1i (h) I(Ax - b)+ 1 (17)

where

-10-
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.. A s T u- vA w - eTU + 0 T v-

: Furthermore if (-b)+ # 0

be - p lx ) Ie I[( Ax - bi+ I M

The number t(A)IAI. is termed as the condition number of the matrix A

relative to the inequalities Ax < b.

-11-



3. Condition Number of a Linear Program

.4 We now apply the results of the previous section to obtain some

corresponding results for a linear programming problem. Consider the linear

program

T
Itinimize{g z H ez > h, z > 0) (20)

zeR 1

* when g and h are given vectors in and R 2  respectively and H is

a given n2 x n1  real matrix. Associated with the above linear program and

its dual are the following necessary and sufficient optimality conditions

[3, 21

-Mx -q 0, -x < 0, qTx < 0 (21a)

where

There 4.N [: H} q -[h] x ~ (21b)

We have the following counterparts for the theorems of Section 2.

Theorem 4. Consider the linear program (20) and its associated optimality

conditions (21). Let

S - (xl-M <q, -x < 0, qx < oi (22)

TT

; .and let l1l1 be a norm on R01 where m = 2(mI + inI ) + 1. Then for each

Ix - p(x) I < -I I(-Nx - q, -x, qTx)+1 (23)

(T)

where

-12-
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(UVvWV 21 W3) is a

_M vertex of:( T'
- : maximum (iww2,w3 1 u-v+MTw1 +w2-qw 3 - 0 (24)

Tv B,~ w21 T T
e U+e v 1

(u,v,Vwv 2w 13 ) 0

If the -norm is replaced by the -norm in the above, then

(Ii) must be replaced by

a - 1 (25)

where a is the positive number relating the y-norms and the a-norms by
n n+m,

IzI < a IzI for all z in R

Theorem 5. (Condition number of a linear program) Let the assumptions of
I IB 21=l+n11+l

Theorem 4 hold, let I. be a monotonic norm on R and let

q 0. Then there exists a number defined by (25) and (24)

such that for each x not in 8 there exists a p(x) in 8 such that

Ixpx) I (- Pq-x,qx)
-I U-q)I +8 * (26)

( q

-13-



SI The number

v 1 -100 1(27)

B
T T

is defined as the condition number of the linear program (20).

We note that because Mx + q > 0, x > 0 imply that q Tx > 0, it follows

that there exists no x satisfying 4x > 0, x > 0 and qTx < 0 and hence

the problem (24) cannot be reduced to a linear program as was done in Theorem

3.

-14-
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